A Predictive Pareto Dominance Based Algorithm for Many-Objective Problems

نویسندگان

  • Edgar Galvan
  • Erin M. Bose
  • Richard J. Malak
چکیده

1. Abstract Multiobjective genetic algorithms (MOGAs) have successfully been used on a wide range of real world problems. However, it is generally accepted that the performance of most state-of-the-art multiobjective genetic algorithms tend to perform poorly for problems with more than four objectives, termed many-objective problems. The contribution of this paper is a new approach for identifying members close to the true Pareto frontier. The proposed criterion, termed predicted Pareto dominance, is extendable to many-objective problems and is relatively fast to compute. Predicted Pareto dominance machine learning to generate a model of the technology frontier. The results show that, on two test problems, predicted Pareto dominance can result in improved performance of a MOGA for many-objective problems; in one of the test problems, increased performance was seen in problems with three or four objectives. The computational study also reveals at least one class of problems for which a naïve implementation of predicted Pareto dominance results in poor performance. 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multi-objective genetic algorithm (MOGA) for hybrid flow shop scheduling problem with assembly operation

Scheduling for a two-stage production system is one of the most common problems in production management. In this production system, a number of products are produced and each product is assembled from a set of parts. The parts are produced in the first stage that is a fabrication stage and then they are assembled in the second stage that usually is an assembly stage. In this article, the first...

متن کامل

Evolutionary Algorithms Based on Decomposition and Indicator Functions: State-of-the-art Survey

In the last two decades, multiobjective optimization has become mainstream because of its wide applicability in a variety of areas such engineering, management, the military and other fields. Multi-Objective Evolutionary Algorithms (MOEAs) play a dominant role in solving problems with multiple conflicting objective functions. They aim at finding a set of representative Pareto optimal solutions ...

متن کامل

A Hybrid MOEA/D-TS for Solving Multi-Objective Problems

In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...

متن کامل

Pareto design of fuzzy tracking control based on the particle swarm optimization algorithm for a walking robot in the lateral plane on slope

Many researchers have controlled and analyzed biped robots that walk in the sagittal plane. Nevertheless, walking robots require the capability to walk merely laterally, when they are faced with the obstacles such as a wall. In walking robot field, both nonlinearity of the dynamic equations and also having a tracking system cause an effective control has to be utilized to address these problems...

متن کامل

A New Algorithm for Constructing the Pareto Front of Bi-objective Optimization Problems

Here, scalarization techniques for multi-objective optimization problems are addressed. A new scalarization approach, called unified Pascoletti-Serafini approach, is utilized and a new algorithm to construct the Pareto front of a given bi-objective optimization problem is formulated. It is shown that we can restrict the parameters of the scalarized problem. The computed efficient points provide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013